Storm Studies in the Arctic (STAR) CFCAS Network

www.starnetwork.ca

D. Barber, J. Hanesiak, G. McBean, K. Moore, R. Stewart, P. Taylor

> Iqaluit, NU November 14, 2007

Outline

- Importance
- STAR Network
- Objectives & Tasks
- Tools & Data
- Themes
- Long-Term Goals
- Collaborations & Users
- Timing of STAR

Importance

- Eastern Arctic has some of the most extreme storms
- Loss of life and/or injury, especially during blizzards
- Stress on industry, infrastructure, transportation, hunting, recreation and landscape
- Nunatsiaq News (April 5, 2005) more hunters are being stranded on the land (including ice)
- Weather is more unpredictable, more fierce storms in Fall
- Some evidence of increased storm activity future increases as well
- Northern Climate Exchange and Artic Climate Impact Assessment (ACIA) both highlight a critical need for better knowledge
- Forecasting / prediction challenges

What is STAR?

- Network of:
 - 6 investigators based at 5 universities
 - 8 collaborators from 5 divisions of Environment Canada and National Research Council
 - Several students
- Investigators have backgrounds in many atmospheric science fields, sea ice, climate science
 - Many years of different field experience (polar / other)
- Collaborating with other IPY projects
 Working with NRI, INAC, Qulliq Energy

Team

 <u>Co-Leads</u>: Hanesiak (UM), Stewart (McGill)

 <u>Co-Investigators</u>: Barber (UM), McBean (UWO), Moore (UT), Taylor (YU)

Collaborators:

Bilan-Wallace (EC), Goodson (EC), Hudak (EC), Kochtubajda (EC), Gravel (EC), Strapp (EC), Nitu (EC), Wolde (NRC)

Objective

 To better understand severe Arctic storms and their associated hazardous conditions, and contribute to their better prediction

- Realized through 4 main themes

 Blowing snow, strong winds, low vis & fog, precipitation, sea ice

Key Tasks

- Major field experiment (data for diagnostic and computer modeling studies) Oct 10 - Dec 5 2007 ; snow and blowing snow Feb 2008
- Determine physical factors that create hazardous weather
- Contribute to the improved computer simulation & prediction of storms
- Optimize science by engaging communities

Geography

Tools

- Research aircraft & onboard radars
- Enhanced weather balloon launches
- Weather Radar
- Mesonet & special weather observations
- Surface remote sensing (sodar, radiometer, surface precipitation)
- Detailed blowing snow measurements
- Computer Models & Analyses Products
- Satellite technology (e.g. CloudSat)

Surface-Based Measurements

Surface-based Measurements

Research Aircraft (NRC Convair-580)

- 3 types of radars looking in various directions
- dropsondes

CONVAIR-580 CLOUD MICROPHYSICS

Under-wing particle probes

- Bulk Microphysics Probes for LWC, TWC, and IWC
- Cloud spectrometers
- Additional pylon on other wing with 3 other particle probes and wind/gust measurement system

Standard PMS 2D Imagery

2D-C mono TR	HANNEL 16:44:29:000 1D T	ME: 16:44:30 Elm(s) = .1404	E+01 Teme(C)= 114.5 T/	SID(m/s)=***** FS124//s	-! !!!!!	
2D-P mono TD	E: 16:44:32:937 1D T	ME: 16:44:33 Eltm(s)=.7174	HILLA ITTI	1D(m/s)=-99.1 F5124(/cc)		
2D-C mono TR	ME: 16:44:34:734 1D T	ME: 16:44:35 Ehm(s)=.1079	E+01 Temp(C)= -64.7 T/	S1D(m/s)=106.3 FS124(/cc	· · · · · · · · · · · · · · · · · · ·	
2D-P mono TB	ME: 16:44:37:343 ID T	ME: 16:44:37 Eltm(s)=.5034	E+00 Temp(C)= 114.5 T/	S1D(m/s)=-99.1 F8124(/cc)		
2D-C mono TD	ME: 16:44:39:750 1D T	ME: 16:44:41 Eltm(s)=.1371	E+01 Temp(C)= 110.7 T	S1D(m/s) = F5124(/e		
2D-P mono TB	ME: 16:44:42:187 1D T	ME: 16:44:42 Ehm(s)=.8111	E+00 Temp(C)=-213.1 T/	S1D(m/s)=-56.3 FS124(/cc	- 0.00	
2D-C mono TU	ME: 16:44:44:250 ID T	UNI II II III III III III III IIII III ME: 16:44:45 Ehm(s) = .1821	E+01 Temp(C)= 263.0 T.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	HIMEENIMIHENE - 0.00	
2D-P mono TB	ME: 16:44:47:171 1D T	P P P	E+00 Temp(C)= -59.5 TA	S1D(m/s)=142.5 FS124(/cc)		
2D-C mono TE	11111111111111111111111111111111111111	HIH I I II FHI FHII II TH FLIFI ME: 16:44:51 Elm(s)=.2059		11 30011600 001 100116011479 AS1D(m/s)=-40.5 F\$124(/cc	NERSENI)- 0.00	
2D-P mono TE	ME: 16:44:52:625 1D T	ME: 16:44:53 Ehm(s) = .5063	E+00 Temp(C)= 288.6 T	ASID(m/s)=***** FS124(/ev		
2D-C mono TE	ME: 16:44:54:687 1D T	Mainten 1 (10) 1 at 456 at 456 at 10 ME: 16:44:56 Elten(s)=.1459	#E+01 Temp(C)= 114.5 T	ABI (11 k) (00542500100 05-01) ASID(m/k) = 83.3 FS124(/ec		
2D-P mono TD	ME: 16:44:57:171 1D T	ME: 16:44:57 Eltm(s)=.2012	E+00 Temp(C)= 256.6 T	510(m/o)-164.9 P\$124(∞ MIII ⊢MII)= 0.00	
2D-C moso TI	ME: 16:44:59:984 1D T	ME: 16:45:00 Eltm(s)=.1100	E+01 Temp(C)=-21/.1 T	ASID(m/s)-81.3 FS124(/co	₀- 0.00 [X-]	
2D-P mono TU	ME: 16:45:02:187 1D T	ME: 16:45:02 Ehm(s)=.6682	E+00 Terres(C)=-178.6 T.	ASID(m/s) 24.0 FSI24(/ce)- 0.00 FLATFILIATE NA	
2D-P mone TI	ME: 16:45:07:390 1D T	ME: 16:45:08 Elmore .7935				
			F			
	164.9	FS124(/co	() = 0.00)		
	ī	111 16-1		11111	A	
		_┝╟╢			n FL	
	-81.3	FS124(/co	e)= 0.00)	1 Per	
	T IAN				24	1
	, I I					'n
	24.0	FS124(/cc)= 0.00		RY	•
			E			
			les		3	/
			des	Unavut, C	anaoustic	
				empête	s dai.	

COUNTERFLOW VIRTUAL IMPACTOR (CVI) TWC SYSTEM

•NEW FOR CLOUDSAT

• being purchased specifically to improve accuracy of IWC measurement

• this instrument should provide accurate estimates of IWC even at very low values (0.005- 0.05 gm-3)

- used for STAR CloudSat SPEC 2D-S (STEREO) SPECTROMETER
- improves accuracy of small ice particle measurement, and absolute spectral definition below 100 um
- used for STAR CloudSat

DSP Control Board 13 with Hardware Data A Compression 22 au

128-Photodiode Array Board with 2-Stage Amplifier and Comparators (1 of 2 Boards)

STAR Research Flights thus far

Remnants of Hurricane Noel

> 1620Z Nov 5

Theme 1 (Iqaluit Area)

 How are hazardous weather conditions produced at Iqaluit & near-by areas?

- Detailed analysis & understanding for local area using a variety of data
- CloudSat validation

CloudSat

Theme 2 (Regional Weather & Sea Ice)

- How is Iqaluit weather similar/dissimilar to other communities (transferability)?
- How is sea ice affected by storms?
- How does the MIZ affect the atmosphere?
- Broadens the knowledge of Theme 1
- Can explain the larger scale conditions affecting Iqaluit
- Special observations: aircraft & mesonets

Convection in Hudson Strait

Theme 3 (Modeling & Prediction)

How well do models do in this environment? Use models to better understand processes/feedbacks No detailed study in Iqaluit area

Theme 3 (Modeling & Prediction)

How well do models do in this environment? Use models to better understand processes/feedbacks No detailed study in Iqaluit area

Prediction Issues

- Winds & Topographic influences
- Interaction of synoptic-scale systems with local topography (e.g. timing of fronts)
- Upslope precipitation (common on Baffin Island)
- Modification of weather systems by sea ice and MIZ
- Weather elements

Theme 4 (Communities & Users)

- Iqaluit most concerned about blizzards & strong winds
- Heavy snow & freezing precip as well
- Sea ice in Fall
 & Spring

What type of weather warning would concern you most?

Theme 4 (Communities & Users)

• OBJECTIVES:

- Integrate traditional knowledge and scientific observations to document and understand changes and hazards (working with James Ford - IPY project
- Conduct an assessment clarifying peoples' perspectives of storms, the hazards and associated impacts, in the context of the analysis of storm systems (STAR-SHIP project with Yvonne Bilon-Wallace / Bob Kochtubajda; northern agency interactions with Gordon McBean)
- Examine human impressions of severe storms as they are studied by STAR (James, Yvonne/Bob, Gordon)
- Communicate research results to relevant government agencies and impacted sectors of society
- Seminars & workshops with communities
- Web site & STAR publications

Theme 4

- STAR Storm Hazards Impact Project
- 1-800-440-4434 and leave a voice message
 Fax: 780 495-3529
- email: nunavut.weather@ec.gc.ca nunavut.meteo@ec.gc.ca
- Online: www.starnetwork.ca

Long-Term Goals

- To better understand and predict weather and weather-related extremes in the Arctic; and
- To better assess whether the intensity and frequency of such extremes will change in the future with climate

Collaboration & Users

- Direct
 - ArcticNet
 - IPY (2007-08)
 - NAC, NRI
 - EC (many divisions of MSC)
 NRC
- MSC (prediction and warnings)
- DND
- CIS for ice impacts from storms
- NavCanada
- Town of Iqaluit & Pangnirtung
- All northern communities will benefit

What will STAR achieve?

- First field expedition in this region
- Unique dataset
- Multi-dimensional (link meteorology, topography, sea ice, fiords, communities)
- Improve prediction capabilities
- Provide tangible results for users
- Only CloudSat validation in the Arctic

Timing Sept 19-26 installation of equipment at Iqaluit and surrounding region Oct 10–Dec 5 Autumn field experiment • 2008 Blowing snow field experiment Feb 1-28 Spring Annual workshop Spring/Summer Iqaluit visit 2009 Spring/Summer Iqaluit visit Annual workshop Summer 2010 Iqaluit visit Summer Project completion and final international Autumn dies in workshop Special issue for STAR research in a selected peer-reviewed journal

Tempêtes

